Abstract
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Galactic black hole transients (GBHTs) show distinct X-ray spectral states at different X-ray luminosities in their outbursts. The state transitions are considered to be associated with the
change in the structure of the accretion flows, caused by the change in the mass accretion rate. A narrow distribution of transition luminosity in terms of the Eddington ratio has been found in
previous studies of GBHTs based on RXTE/PCA 2-20 keV data (Macarone 2003; Vahdat et al.2019) and this Eddington ratio at the transitions is often used in recent studies with instruments
covering softer energy bands, such as Swift/XRT and NICER/XT]I, covering energies below 1 keV to 10 keV. However, the X-ray states characterized by the spectral parameters may have
different definitions depending on the energy ranges adopted in the spectral analysis, leaving the question whether the distribution of transition luminosity obtained with RXTE remains the
same when we use the instruments covering softer energy bands. In this work, we investigated the state transitions and the variations of luminosities of 8 outbursts of 7 GBHTs. Our results
show that the bolometric luminosity of the power-law component is tightly constrained to 1% Eddington luminosity at index transition when the photon index of that component starts to
decrease towards the hard state. This is consistent with the conclusions from the previous RXTE results (Vahdat et al. 2019; Kalemci et al. 2013). Moreover, our results suggest that the disk
truncation starts after bolometric disk luminosity drops below 1% Eddington luminosity.

Source Selection
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X-ray Spectral Analysis

Model: Multicolor disk + Power-law
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Definitions of Transition Luminosities
To avoid the bias of applying state definitions concluded from RXTE observations
in previous studies, we used two epoch to define the transition: disk recession

and drop of photon index.
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This figure shows how the
disk evolves along the disk
luminosity varies, the filled
star in the right side
represents the start point.
We can see that after the
disk luminosity decreases
to around 1%, though
there are some outbursts
deviate the “1% Eddington
ratio”, such as the MAXI
J1727 —203.

Monte Carlo Simulation (MCS) Applied to Luminosity Distributions
(Accounting total uncertainties)

Each outburst:
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Distributions of Transition Luminosities (MCS)

Bolometric correction: Disk flux: 0.01 — 200 keV
Power-law flux: T;, — 200 keV; 0.5 — 200 keV (no disk)

Lpisk/Leqq before/after start of
disk recession

2500
Avg: —1.88/-2.18

.~~~ ©:0.37/0.39

2000

1500

1000|

Expected value

a
g
]

lo

Lpisk/Leqq before/after I" transition

Avg: —1.94/-2.03
c:0.48/0.38

2500

2000]

1500

1000

Expected value

w
3
S

2.0

109(L i/ Lzaa)

To quantify the transition luminosity
distributions and to reduce the bias
from a specific outburst, we
performed a monto carlo simulation
and accounted the total uncertainty of
the Eddington ratio caused by the
errors of flux calculation, source
distance and black hole mass
estimates. The black hole masses and
distances are quoted from the table in
“Source Selection”, averaged values
were adopted when lacking
information (marked with blue in
table). The averaged final distributions
obtained after performing Monto
Carlo simulation are converged and
were fitted by gaussian curves.

/)

(1) Distinct decrease in Ly when
disk starts to recede (Lgisx < 1% Legq )

(2) A narraow distribution of
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disk recession

Siwft/XRT, NICER:

Log (Ly; /Legq ) = -1.82 £ 0.27
Important for constraining black

- hole mass with Swift/NICER data!




