Modelling the Multi-wavelength Non-thermal Emission of AR Sco.

Louis Du Plessis louisdp95@gmail.com

Supervisor: C. Venter Collaborators: A.K. Harding Z. Wadiasingh

Centre for Space Research, North-West University

January 15, 2023

Modelling the Multi-wavelength Non-thermal Emission of AR Sco.

Louis Du Plessis

AR Sco Observations

General Particle Dynamics

Radiation-Reaction Force

Reproducing Takata et al. (2017)

Emission Map Calibration

Future Work

Bibliography

AR Sco Observations

- AR Sco is a binary system containing a white dwarf with a M-dwarf companion.
- The orbital period was inferred as 3.55 hours and a "pulsar" spin period of 1.95 min (Marsh et al., 2016). Observations by Stiller et al. (2018) also inferred a P = 7.18 × 10⁻¹³ ss⁻¹.
- The emission lines from the system show no indication of an accretion disc or column.
- The optical and UV are non-thermal emission and pulsed at the WD spin and beat period.
- Buckley et al. (2017) found that the system exhibits strong linear optical polarisation (up to ~ 40%) and estimated the WD B-field to be ~ 500MG

Figure: Optical data from Potter and Buckley (2018)

Modelling the Multi-wavelength Non-thermal Emission of AR Sco.

Louis Du Plessis

AR Sco Observations

General Particle Dynamics

Radiation-Reaction Force

Reproducing Takata et al. (2017)

Emission Map Calibration

Future Work

Bibliography

General Particle Dynamics

For the particle dynamics we solve the Lorentz force equation given by:

$$\frac{d\mathbf{p}}{dt} = q \left(\mathbf{E} + \frac{c\mathbf{p} \times \mathbf{B}}{\sqrt{m^2 c^4 + \mathbf{p}^2 c^2}} \right). \tag{1}$$

- We implemented an adaptive time step scheme as well as compared various higher order numerical integrators finding the Prince-Dormand 8(7) to be the best choice when balancing numerical runtime and accuracy.
- ► To test the solvers we set up various test scenarios namely a constant B-field, a changing B-field, a magnetic dipole and a constant B-field with a constant E_⊥-field.
- We made sure we had the the correct particle trajectories, Lorentz factors, gyro-radii and drift components.

Figure: Particle trajectory for a) constant B-field, b) magnetic dipole and c) constant B-field with constant E_{\perp} .

Modelling the Multi-wavelength Non-thermal Emission of AR Sco.

Louis Du Plessis

AR Sco Observations

General Particle Dynamics

Radiation-Reaction Force

Reproducing Takata et al. (2017)

Emission Map Calibration

Future Work

Bibliography

Radiation-Reaction Force

- For the general radiation-reaction force we used the equation from Landau and Lifshitz neglecting the temporal and spacial change component since its contribution is negligible.
- We also include the super-relativistic form of the equation to probe super-relativistic particle assumptions. The equation is given as:

$$f_x = -\frac{2e^4\gamma^2}{3m^2c^4}\left\{ (E_y - H_z)^2 + (E_z + H_y^2) \right\}.$$
 (2)

Calculating the particle energy and energy radiated by the particle (E_{rad} = ∫ F_{rad} · v.dt), we can self consistently check if the system is losing or gaining energy.

Figure: Comparison plot of particle energy and energy radiated with the initial particle energy in a magnetic mirror scenario.

Modelling the Multi-wavelength Non-thermal Emission of AR Sco.

Louis Du Plessis

AR Sco Observations

General Particle Dynamics

Radiation-Reaction Force

Reproducing Takata et al. (2017)

Emission Map Calibration

Future Work

Bibliography

Reproducing Takata et al. (2017)

We reproduce the magnetic Ysup mirror scenario from Takata et Ygen al. (2017). YTakata R_{mirror} They use rewritten forms of 101 equations from Harding et al. 🥿 (2005). $\frac{d\gamma}{dt} = -\frac{P_{\perp}^2}{t_c}$ 2 100 $\frac{d}{dt}\left(\frac{P_{\perp}^{2}}{B}\right) = -2\frac{B}{t_{s}\gamma}\left(\frac{P_{\perp}^{2}}{B}\right)$ 0.2 0.4 0.6 0.8 1.0 R/R_a 107 (3) Powperp. sup 105 Powperp, gen • Where $t_s = 3m_e^3 c^5/2e^4 B^2$. Power(erg/s) These equations assume super-relativistic particles with small pitch angles. Our super-relativistic case agrees with Takata's γ_{loss} but 10-3 not the mirror point. 10-5 Our general case disagrees 10^{-4} 10-3 10-2 10-1 largely with Takata's results. Time(s)

Modelling the Multi-wavelength Non-thermal Emission of AR Sco.

Louis Du Plessis

AR Sco Observations

General Particle Dynamics

Radiation-Reaction Force

Reproducing Takata et al. (2017)

Emission Map Calibration

Future Work

Bibliography

Emission Map Calibration

- We calculate our synchrotron and curvature radiation similar to the model of AK Harding and collaborators.
- Simulating a millisecond pulsar scenario we calibrate our emission maps, light curves and spectra with the results of AK Harding and collaborators.
- To compare we use the same force-free fields and are investigating the correct E-field to compare particle dynamics.
- They include time-of-flight phase correction.

Figure: Example skymap from Barnard et al. (2021)

Figure: Example light curve from Barnard et al. (2021)

Modelling the Multi-wavelength Non-thermal Emission of AR Sco.

Louis Du Plessis

AR Sco Observations

General Particle Dynamics

Radiation-Reaction Force

Reproducing Takata et al. (2017)

Emission Map Calibration

Future Work

Bibliography

Future Work

- Calibrate with Harding and collaborators' emission maps and particle trajectories for pulsar scenario.
- Use appropriate E-field (force-free fields) to get E × B drift. Study effect of new WD scenario on model outputs.
- Implement polarisation calculations to produce phase plots.
- Determine how to scale particles' emission to have significant statistics. Invoke magic trickery to get code running in a reasonable time.
- Run code for orbital time scale, investigate different B-fields and E-fields, and investigate different particle pitch-angle distributions.
- Run code for new source similar to AR Sco.

Modelling the Multi-wavelength Non-thermal Emission of AR Sco.

Louis Du Plessis

AR Sco Observations

General Particle Dynamics

Radiation-Reaction Force

Reproducing Takata et al. (2017)

Emission Map Calibration

Future Work

Bibliography