Flaring activity from Magnetic reconnection in Bl Lac jets

IUCAA

S. Agarwal¹, B. Banerjee^{2,3}, A. Shukla¹, J. Roy⁴, S. Acharya¹, B.Vaidya¹, V. R. Chitnis⁵, S. M. Wagner⁶, K. Mannheim⁶, M. Branchesi^{2,3}

¹Department of Astronomy, Astrophysics and Space Engineering Indian Institute of Technology Indore, Simrol, India ²Gran Sasso Science Institute, L' Aquila, Italy ³INFN – Laboratori Nazionali del Gran Sassos, L' Aquila, Italy ⁴Inter-University Centre for Astronomy and Astrophysics, Pune, India ⁵Tata Institute of Fundamental Research, Mumbai, India ⁶Institute for Theoretical Physics and Astrophysics, Universität Würzburg, Würzburg, Germany

Abstract

The evolution of the spectral energy distribution during flares constrains models of particle acceleration in blazar jets. In 2020 and 2021, the archetypal blazar BL Lac gave a rare opportunity to explore spectrum variation during an extended period of intense flaring. During its highest gamma-ray state, the measured flux (0.1-300GeV) was as high as $2.15 \times 10^{(-5)}$ ph cm-2 s-1, with sub-hour scale variability. The synchrotron hump extended into the X-ray regime up to 7.5 KeV and was accompanied by a minute-scale flare and a peak shift of the inverse-Compton hump in gamma rays. In shock acceleration models, a Doppler factor value of more than 100 is necessary to explain the observed rapid variability, change of state, and gamma-ray peak shift. Assuming particle acceleration in mini-jets produced by magnetic reconnection during flares alleviates the constraint on the bulk Doppler factor. In such jet-in-jet theories, the unexpected alignment of a magnetic plasmoid with the direction of the line of sight causes the observed spectrum shift to higher energy (towards the TeV domain) and simultaneous fast variability.

Introduction	Results	
 Bl lac, a classified Low peak Bl lac displays behavioural shift to an Intermediate Bl lac type. 	 BI lac found to be variable and evolves with time. 	 Observed Synchrotrn emission upto 7.5 KeV for high flux state.
 Detected H_a and H_b lines hints at presence of Broad line region despite of BI lac behaviour. 	 Power spectrum reveal similar variability over 13 years of Fermi era consistent with pink noise. 	6. Shift in spectrum to high energies (Right) during high flux state followed by a shift to lower energies (Left) as
 Known TeV emitter → observed fast variability (13 min) [Arlen et al. 2013] 	 Observed Fast X-ray variability upto 7.7 min (4.8σ). 	7. Electron energies responsible for observed emission of 7.5 KeV found to be 6.5 $\times 10^4$ - 5.5 $\times 10^5$ limiting
 Onset of increased activity during 2020 – 2021 in GeV band (100MeV – 300GeV) 	 Flux distribution preferred to be log normal (State 5 and 3) indicating mini jet-in-jet model. 	magnetic field within 0.3 – 2.2 G.

Fig 1: 10 day binned Fermi-LAT LCs of Bl lac for MJD 54683-59473. Red line characterizes 13 yr data into 5 flux states

What is fuelling the jet activity and simultaneous shifts in SED for the flux states ?

Fig 2: High energy spectrum (0.1 -300GeV) of 5 states. The shift in

spectrum identified with changing values of alpha.

Data Acquisition

Brightest X-ray state

Brightest Gamma-ray state

We have taken data in 3 wavebands for spectral study:

- Fermi LAT [Fig 1 & 3]
- Swift XRT and Swift UVOT

Fig 3: (Top) 1 day binned Fermi/LAT lightcurve for State-5. Five flaring episodes selected for studying flux evolution

Fig 5: A representation of site of magnetic reconnection. [Shukla et al. 2020]

References

- 1. Agarwal et al. 2023 (Submitted to MNRAS Letters)
- 2. Giannois 2013
- 3. Tammi & Duffy 2009
- 4. Morris et al. 2019
- 5. MAGIC Collaboration et al. 2019
- 6. Biteau & Giebels 2012
- 7. Ghisellini & Tavecchio 2009
- 8. Poutanen & Stern 2010

Summary

- Fast variability coinciding with apparent shift of X-ray spectrum to second hump along with observed synchrotron emission upto 7.5 KeV could be associated with preferred alignment of emission along the line of sight. Through jetin-jet interation [Meyer et. al 2021, Giannios et al 2013].
- Simultaneous shift of second hump to higher energy further support magnetic reconnection.
- Expected TeV emission on occasions of such flaring episodes.

Contact

